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Prolegomena to Any Future Physics

The physicist’s mind yearns for
field theory: it is beautiful.

The physicist’s heart yearns for
phase space: it is elegant.

The physicist’s soul yearns for
covariance: it is sublime.

Theorem (my strongest conviction)

Both the Lagrangian (variational) and Hamiltonian (symplectic)
formalisms work best when all three of these principles are unified.
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Executive Summary

In pursuit of a covariant phase space for field theories, we will
explore (a refined version of) the following hieroglyphs.

The variational principle and the symplectic potential:

δL = E δφ+∇µθµ, θµ = πµ δφ. (0.1)

The symplectic form and Hamilton’s equations:

ωµ = δθµ = δπµ ∧ δφ, Ω =

∫
Σ
nµω

µ, ιXξΩ = δH. (0.2)

Applications: CPS is unreasonably beautiful and unifies classical
physics. It reproduces the ADM mass and reveals BH entropy as a
Noether charge. It has the capacity to understand the phase space
of GR, whose degrees of freedom live “on the boundary.”
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The Hole Argument

Suppose that we solve the initial value problem in GR for g(x).

Perform a coordinate transformation ψ : M −→M , sending
x 7→ y = ψ(x), which leaves the initial value surface Σ fixed.

By coordinate invariance, g(y) = (ψ∗g)(x) 6= g(x) must also solve
the same initial value problem. Thus g is not determined uniquely!
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The Hole Argument

The problem: GR seems to be indeterministic.

The resolution (physics): the solutions (M, g) and (M,ψ∗g)
are gauge-equivalent by the active diffeomorphism ψ ∈ Diff(M).

The resolution (math): the spacetimes (M, g) and (ψ(M), ψ∗g)
are isometric by ψ, by virtue of pulling back the metric.

The moral: one must be careful when speaking of time, since the
concept is generally meaningless. The initial value problem is not a
covariant notion, and can be approached only in special cases.

Warning: this applies equally to all spacetimes, not just the weird
ones. (And by the way, AdS is not even globally hyperbolic.)
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The Problem of Time

The Hamiltonian in GR is zero. Three ways to see this:

1 Physics: the evolution of g is locally indistinguishable from a
gauge transformation, which has vanishing Noether charge.

2 Math: H = 0 for any reparametrization-invariant system.

3 Philosophy: g is dynamical; it creates spacetime. There is no
prior geometry, so g cannot evolve with a parameter it makes.

We conclude that time in GR does not flow; it just is.

Meanwhile, unitarity in QM demands an absolute, rigid, external

notion of time: U = e−iĤt, and |ψ(t)〉 = U(t) |ψ0〉. As long as
QM embraces an evolution parameter, it cannot be fully covariant.
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The Wheeler-DeWitt Equation

Blindly quantizing yields the Wheeler-DeWitt equation, the
Schrödinger equation for the quantum state of the universe:

Ĥ |Ψ〉 = 0. (1.1)

The wave function of the universe has no universe in which to
evolve. It lives in the Hilbert space of quantum metric fields.

QM issues: The WDE has no classical limit (i.e. no ~). The state
|Ψ〉 is “frozen” and cries out for a background-independent QM.

GR issues: H is the wrong thing to consider! We need a covariant
object that generates the phase space flow of the metric.

We turn to the classical phase space of field theory and of gravity.
Is there any more noble goal than to geometrize geometry?
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The Variational Principle

Trajectories and Velocities

Let M ⊂ Rn be the world. The trajectory of a particle is a curve
q : Rt −→M , and local coordinates qi ∈ Rn describe its position.

Its velocity is a vector (q, v) in the tangent space TqM , which
has a natural basis

{
∂
∂qi

= ∂i
}

. Thus v = vi ∂
∂qi

= vi∂i.
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The Variational Principle

Lagrangian Mechanics I

“Why are q and q̇ treated as independent?”

The numbers vi are coefficients needed to specify an arbitrary
v ∈ TqM , and can be chosen independently of qi (duh).

But when v is actually tangent to the trajectory, vi = q̇i(t).

The symbol q̇i was the name historically given to vi. Nice job.

The initial data (q0, q̇0) uniquely determine q(t). But they also
determine q̇(t). So q(t) and q̇(t) effect each other’s dynamics.

Hence we are interested in the particle’s combined trajectory
(q, q̇) : Rt −→ TM traced out through the tangent bundle TM .

How does one determine this trajectory?
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The Variational Principle

Lagrangian Mechanics II

The Lagrangian of a mechanical system is a function
L : TM −→ R, and the action functional is its integral over Rt:

S[q(t), q̇(t)] =

∫
R

dt L(q, q̇). (2.1)

The variational principle says that δS = 0 on physical paths.

By requiring that δq = 0 at infinity, the Euler-Lagrange (EL)
equations follow. In local coordinates on TM , these are

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0. (2.2)

E.g. For a free particle on (M, g), the Lagrangian is the metric,
L(x, ẋ) = 1

2g(ẋ, ẋ) = gij ẋ
iẋj . The EOM is the geodesic equation.
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L(x, ẋ) = 1
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The Variational Principle

Upgrading to Differential Forms

Everything in sight is now a differential form—an antisymmetric
tensor—on the parameter space Rt (time, basis dt, “horizontal”)
as well as on the target space M (space, basis δqi, “vertical”).

E.g. L = L dt is a 1-form on Rt and a 0-form on M . The action
S =

∫
R L is a scalar. The variation δL is then a (1, 1)-form.

Our main tools: d2 = δ2 = 0 (“differential forms are fermions”)
and Stokes’s theorem,

∫
M dω =

∫
∂M ω (duality of d and ∂).

E.g. when the EOM hold, the variation of L must either vanish
or be a total time derivative with vanishing integral over Rt:

δL = (δL)dt =

(
dσ

dt

)
dt = dσ,

∫
R

dσ =

∫
∂R
σ = 0. (2.3)
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The Variational Principle

The Fundamental Calculation

Consider a single particle moving in one dimension. We vary L:

δL =
(
δL
)
dt =

[
∂L
∂q
− d

dt

(
∂L
∂q̇

)]
δq dt+

d

dt

(
∂L
∂q̇

δq

)
dt ≡

≡ E δq dt+ d
(
p δq

) !
= dσ. (2.4)

The (1, 0)-form E = E dt is called the Euler-Lagrange form.
The (0, 1)-form θ ≡ p δq is called the symplectic potential.

At the level of the action, this calculation reads

δS =

∫
R
δL =

∫
R
E δq dt+

∫
∂R
p δq = 0. (2.5)
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The Variational Principle

Main Results of Lagrangian Mechanics

Both the Euler-Lagrange equations and Noether’s theorem follow
from δL = E δq + d

(
p δq

)
= dσ by setting different terms to zero.

1 If δq vanishes on the boundary, i.e. δq
∣∣∣
∂R

= 0, then

demanding δS = 0 gives us the equations of motion:

δS =

∫
R
E δq dt +

���
���

∫
∂R
p δq = 0 =⇒ E ≡ 0. (2.6)

2 If δq is an on-shell symmetry, i.e. δS = 0 when E = 0,

δL = ����E δq dt+
d

dt

(
p δq

)
dt =

dσ

dt
dt =⇒ d

dt

(
p δq − σ

)
= 0.

We call p δq − σ the Noether current of the symmetry δq.
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The Variational Principle

Example: The Harmonic Oscillator

The configuration space is Rx, and the tangent bundle is R2
(x,ẋ).

The Lagrangian is L(x, ẋ) = Ldt =
(

1
2mẋ

2 − 1
2mω

2x2
)
dt, so

δL =
[
−mω2x−mẍ

]
︸ ︷︷ ︸

E

δxdt+
d

dt

(
mẋ δx

)
︸ ︷︷ ︸

θ

dt. (2.7)

The equations of motion are

E = −mω2x−mẍ = 0 ⇐⇒ ẍ = −ω2x, (2.8)

and the symplectic potential is θ = p δx = mẋ δx.
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The Variational Principle

Example: The Harmonic Oscillator

A Noether current is obtained for each symmetry δx of the action.

E.g. δx = ẋ =⇒ δẋ = ẍ generates time translation. We have:

δL =

[
∂L
∂x

δx+
∂L
∂ẋ

δẋ

]
dt =

[(
−mω2x

)
(ẋ) + (mẋ)(ẍ)

]
dt =

= m
(
ẋẍ− ω2xẋ

)
dt =

d

dt

[
1

2
mẋ2 − 1

2
mω2x2

]
dt = dL. (2.9)

Thus δL = dL and θ = mẋ δx = mẋ2 = p δx, so H is conserved:

d

dt

(
p δx− L

)
=

d

dt

(1

2
mẋ2 +

1

2
mω2x2

)
=

dH
dt

= 0. (2.10)

We have “discovered” the Legendre transformation of σ = L via θ.
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Hamiltonian Mechanics

Four Treatments of Hamiltonian Mechanics

We will use a combination of the following methods:

1 Legendre transforms. Assemble Hamilton’s equations by
considering δL and δH. Straightforward and accessible, but
unenlightening and obscures the symplectic structure.

2 Conservation of energy. Consider a Hamiltonian vector
field. Physically motivated, but not (immediately) symplectic.

3 Construct phase space. Use θ to build the symplectic form.
Possibly illuminating, but is a long story and takes effort.

4 Mathematics. Make the answer a definition and prove that it
works. Deep and precise, but unmotivated and too abstract.

The uncomfortable truth: it works because it works.
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works. Deep and precise, but unmotivated and too abstract.

The uncomfortable truth: it works because it works.
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Hamiltonian Mechanics

Hamilton’s Equations for Dummies

Big idea: The phase space trajectory γ(t) =
(
q(t), p(t)

)
is an

integral curve of the Hamiltonian vector field X = (q̇, ṗ).

The Hamiltonian should be conserved. Thus γ lies on a level
surface of constant H(q, p) = E, and X is orthogonal to ∇H:

(q̇, ṗ) = X ⊥ ∇H =

(
∂H

∂q
,
∂H

∂p

)
. (2.11)

Therefore the components of X must be q̇ = ∂H
∂p and ṗ = −∂H

∂q .
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Hamiltonian Mechanics

What is Phase Space?

Phase space is the set of all
initial conditions for the EOM,
or equivalently all solutions.

Since p = ∂L
∂q̇ is a function of

tangent vectors q̇, it is a 1-form.
Therefore phase space is the
cotangent bundle M = T ∗M .

The action of p on v ∈ TM is

p(v) = (p δq)

(
q̇
∂

∂q

)
= pq̇.

If v = d
dtq(t), this is θ again!
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Hamiltonian Mechanics

What is Phase Space?

The Hamiltonian vector field
X ∈ TM is the “velocity”
tangent to γ(t), and Hamiltonian
mechanics is the flow by X.

The canonical 1-form θ projects
X = (q̇, ṗ) ∈ TM to q̇ ∈ TM
and feeds the result to p.

Since θ is also p δq, it is the
bridge between the Lagrangian
and Hamiltonian viewpoints.
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Hamiltonian Mechanics

The Symplectic Form

We are now in a position to use θ = p δq to relate X to H = H dt.
The key insight is that X ⊥ ∇H ∼ δH; to make this precise, we
seek an antisymmetric machine that raises and lowers indices.

The symplectic form is ω = δθ = δp ∧ δq. It is closed, δω = 0,
and nondegenerate, i.e. ιXω ≡ ω(X,−) is a 1-form unique to X.

Now ω(X,−) “lowers the index” of X, sends ( ∂∂q ,
∂
∂p) 7→ (δq, δp),

and rotates its entries by π
2 . (Un)surprisingly, the result is −δH:

X = (q̇, ṗ) =⇒ ιXω = (−ṗ, q̇) = −δH =

(
−∂H
∂q

,−∂H
∂p

)
. (2.12)

Thus Hamilton’s equations are expressed by ιXω + δH = 0.
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Hamiltonian Mechanics

Example: The Harmonic Oscillator

The configuration space is Rt, and the phase space is R2
(p,x).

The Hamiltonian is H(p, x) =
(

1
2mp

2 + 1
2mω

2x2
)
dt = H dt.

The symplectic form is θ = p δx =⇒ ω = δθ = δp ∧ δx.

Now we assemble Hamilton’s equations. We have

δH =
∂H
∂x

δx+
∂H
∂p

δp = mω2x δx+
p

m
δp,

X = (ẋ, ṗ) = ẋ
∂

∂x
+ ṗ

∂

∂p
=⇒ ιXω = −ṗ δx+ ẋ δp. (2.13)

Therefore ιXω = −ṗ δx+ ẋ δp
!

= −mω2x δx− p
mδp = −δH,

and matching differentials yields ẋ = p
m and ṗ = −mω2x. Nice!
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m and ṗ = −mω2x. Nice!



The Problem of Time Particle Mechanics Particles and Fields Covariant Phase Space Gravity at Last

Hamiltonian Mechanics

Example: The Harmonic Oscillator

The configuration space is Rt, and the phase space is R2
(p,x).

The Hamiltonian is H(p, x) =
(

1
2mp

2 + 1
2mω

2x2
)
dt = H dt.

The symplectic form is θ = p δx =⇒ ω = δθ = δp ∧ δx.

Now we assemble Hamilton’s equations. We have

δH =
∂H
∂x

δx+
∂H
∂p

δp = mω2x δx+
p

m
δp,

X = (ẋ, ṗ) = ẋ
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Summary So Far

Lagrangian mechanics:

L = L dt lives on TM and determines the path
(
q(t), q̇(t)

)
.

The variational principle yields the EOM and Noether charges.

The all-important symplectic potential θ = p δq ∼ δS
typically vanishes on ∂R, but can be nonzero in the bulk.

Its variation ω = δθ = δp ∧ δq ∼ δ2S is the symplectic form.

Hamiltonian mechanics:

The Hamiltonian vector field X generates phase space flow
and determines the path γ(t) =

(
q(t), p(t)

)
through H = E.

We reimagine θ as the canonical 1-form on T ∗M .

The symplectic form encodes the structure of Hamilton’s
equations, and converts between X and H.
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Two Schools of Thought

A particle is a curve q : Rt −→M with position q(t) = x ∈M .

Fields are particle densities. Space and time are different.

In a fog of N −→∞ particles qa(t), the index a −→ x ranges
over M . The fog’s density is a scalar field φ(x) = φ(x, t).

The field has one degree of freedom at every x ∈M , and the
notion of particle positions evaporates: MM −→M × R.

This is radical, unweildy, and infinite-dimensional. It looks
hard to motivate non-scalar fields or make things covariant.

Fields are sigma models. Space and time are unified.

A field φ : M −→ F maps spacetime points x ∈M to field
values φ(x) ∈ F , and has dimF degrees of freedom.

This generalizes the time parameter and the configuration
space of particle mechanics to arbitrary manifolds.
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First Attempt: De Donder–Weyl Theory

Lagrangian field theory is already covariant: ∂L
∂φ = ∂µ

(
∂L

∂(∂µφ)

)
.

It is tempting to “do the same thing” in Hamiltonian field theory.

The polymomenta πµ and De Donder–Weyl Hamiltonian are

πµ =
∂L

∂(∂µφ)
, H = πµ∂µφ− L. (3.1)

The De Donder–Weyl equations are the “obvious” ones:

∂µφ =
∂H
∂πµ

, ∂µπ
µ = −∂H

∂φ
. (3.2)

N.B. This H is covariant, but does not generate time translations;
meanwhile, the “textbook” H cannot be covariant! Also, the DW
theory has too many momenta. The CPS formalism soaks up the
index in πµ by choosing a Cauchy surface Σ and considering πµnµ.
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Too Many Bundles: Fields and their Jets

We generalize the tangent bundle, spanned by vectors q̇, to a space
spanned by all of field derivatives ∂µφ. This is the jet bundle J1F .
We also want to consider both spacetime differentials dx and field
variations δφ, so we define the field bundle E −→M with fiber F .

Lagrangian FT takes place on J1E, spanned by (xµ, φa, ∂µφ
a).

Hamiltonian FT happens on (J1E)∗, spanned by (xµ, φa, πµ,a).

Directions in M (base/spacetime/input/source) are horizontal.
Directions in F (fiber/field-space/output/target) are vertical.

E.g. The real scalar field: M = R3,1
xµ , F = Rφ, and E = R3,1

xµ ×Rφ.

Then (J1E)∗ = R3,1
xµ ×Rφ ×R3,1

πµ . Everything is finite-dimensional!
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How Classical Physics Should Be Done

On a spacetime Mn, L = L εM becomes an (n, 0)-form.
The Euler-Lagrange equations are encoded in the interactions
between the horizontal and vertical derivatives d and δ.

The de Rham differential on J1E is d = d + δ, and its
(d, δ)-bigraded de Rham complex is the variational bicomplex.

The fundamental calculation is then the equality of (n, 1)-forms

dL = δL εM = E εM δφ− dθ = dσ. (3.3)

The multisymplectic potential and multisymplectic form are

θ = (πµ δφ)nµ ε∂M ∈ Ω(n−1,1), ω = δθ ∈ Ω(n−1,2). (3.4)

The dream: do geometrical quantization to all of this!
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The Road Ahead

We turn to the construction of the covariant phase space:

1 Begin with the kinematic configuration space C and its
dynamical shell P̃, also called the pre-phase space.

2 Vary the action, taking care of boundary conditions, to obtain
a pre-symplectic potential θ̃ and pre-symplectic form Ω̃ = δθ̃.

3 Quotient out P̃ and Ω̃ by gauge symmetries, which are zero
modes of Ω̃. This gives us the covariant phase space (P,Ω).

4 Given a Hamiltonian vector field Xξ, construct the
corresponding diffeomorphism charge Hξ.

Once all of this is done, we will proceed to apply it to gravity!
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Theme and First Variation

Volume Forms and Boundaries

In moving from particles to fields, we put volume form on M :

dt −→ εM =
√
−g dnx =

√
−g dxµ1 ∧ · · · ∧ dxµn . (4.1)

If n is the outward unit normal form/vector to ∂M , then the
volume form on ∂M is given by εM = n∧ ε∂M ⇐⇒ ε∂M = ιnεM .

E.g. On the half-Minkowski space R3,1
x≤0, we have

εM = dt ∧ dx ∧ dy ∧ dz,

nµ = ∂x = (0, 1, 0, 0), (4.2)

ε∂M = nµ dxµ dxν dxρ dxσ = −dt ∧ dy ∧ dz.
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Theme and First Variation

Variation of the Lagrangian

We proceed as before: given L = L(φ, ∂µφ) εM , we have

δL =

[
∂L
∂φ
−∇µ

(
∂L

∂(∇µφ)

)]
δφ εM +∇µ

(
∂L

∂(∇µφ)
δφ

)
εM =

= E δφ εM +∇µ(πµ δφ)εM
!

= (∇µσµ)εM . (4.3)

We get a vector’s worth of symplectic potentials θµ = πµ δφ and
variations σµ. The “product rule” gives us their boundary values:

(∇µσµ)εM = dσ, σ
∣∣∣
∂M

= (nµσ
µ)ε∂M ,

(∇µθµ)εM = dθ, θ
∣∣∣
∂M

= (nµθ
µ)ε∂M . (4.4)

As advertised, πµnµ is the “correct” momentum conjugate to φ.
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Theme and First Variation

Variation of the Action

At the level of the action, these divergences become surface terms:

δS =

∫
M
E δφ εM +

∫
M

(∇µθµ)εM = E +

∫
M

dθ =

= E +

∫
∂M

θ = E +

∫
∂M

(nµπ
µ δφ)ε∂M . (4.5)

If δφ vanishes on ∂M , then δS = 0 implies E = 0 as usual.

And if δφ is an on-shell symmetry, we get Noether’s theorem:

δL = (∇µθµ)εM = (∇µσµ)εM =⇒ ∇µ(θµ − σµ) = 0. (4.6)

Thus the Noether current jµ = πµ δφ− σµ is conserved.
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Theme and First Variation

Symplectic Circus

The “full” symplectic potential θ and form ω are defined by
contracting θµ and ωµ = δθµ into εM :

θµ = πµ δφ =⇒ θ = ιθµεM −→ (nµπ
µ δφ)ε∂M ,

ωµ = δπµ ∧ δφ =⇒ ω = ιωµεM −→ (nµ δπ
µ ∧ δφ)ε∂M . (4.7)

To obtain a Hamilton equation ιXω = −δH, one tries to write
down X ∼ (∇φ,∇π) generalizing (q̇, ṗ). But this proves unweildy.

We restrict to globally hyperbolic M , choose a Cauchy surface Σ,
call ω the symplectic density, and define the symplectic form

Ω =

∫
Σ
ω =

∫
Σ

(n̂µω
µ)εΣ. (ΩΣ = ΩΣ′) (4.8)

where n̂ is the (past-pointing) normal to Σ. This is still covariant!
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We restrict to globally hyperbolic M , choose a Cauchy surface Σ,
call ω the symplectic density, and define the symplectic form

Ω =

∫
Σ
ω =

∫
Σ

(n̂µω
µ)εΣ. (ΩΣ = ΩΣ′) (4.8)

where n̂ is the (past-pointing) normal to Σ. This is still covariant!



The Problem of Time Particle Mechanics Particles and Fields Covariant Phase Space Gravity at Last

Example: Free Scalar

The Lagrangian and its Variation

The real, free scalar field on Minkowski spacetime M = R3,1 has
phase space (J1E)∗ = R3,1

xµ × Rφ × R3,1
πµ and Lagrangian

L = L d4x = −
[

1

2
(∂µφ)(∂µφ) +

1

2
m2φ2

]
d4x. (4.9)

The conjugate momenta are πµ = ∂µφ. We vary the Lagrangian to
obtain the equations of motion and the symplectic data:

δL =
[(
∂µ∂

µ −m2
)
φ
]︸ ︷︷ ︸

E

δφd4x+ ∂µ (∂µφ δφ)︸ ︷︷ ︸
θµ

d4x. (4.10)

The equations of motion are
(
∂µ∂

µ −m2
)
φ = 0, and we have

θµ = ∂µφ δφ = πµ δφ =⇒ ωµ = δθµ = δπµ ∧ δφ. (4.11)
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Example: Free Scalar

The Noether Current

Consider the generator of spacetime translations:

δνφ = ∂νφ = πν =⇒ δν(∂µφ) = ∂ν∂µφ = ∂νπµ. (4.12)

The corresponding variation in L is

δνL =

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
εM =

= −
[(
m2φ

)
(∂νφ) + (∂µφ)(∂ν∂µφ)

]
εM = (4.13)

= −∂µ
[

1

2
(∂µφ)(∂µφ) +

1

2
m2φ2

]
εM = (∂νL)εM .

The conserved current is evidently the stress tensor:

jµν = θµν − σµν = ∂µφ∂νφ− δµνL = Tµν . (4.14)
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Diffeomorphism Charges

Removing Gauge Symmetries

If two nearby field configurations φ and φ+ δφ represent the same
physical state, then the vector Z “=” δφ is a degenerate direction
in pre-phase space P̃, and the pre-symplectic form Ω̃ is degenerate.

(More precisely, δφ = LZφ, where L is the Lie derivative.)

Hamiltonian evolution by Z is fake: ιZΩ̃ = 0.

Such Z are zero modes of the pre-symplectic form Ω̃. The group
of diffeomorphisms of P̃ generated by ker Ω̃ is the gauge group G.

We formally glue all equivalent field configurations along all Z to
obtain the phase space P = P̃/G. We also obtain the symplectic
form Ω = Ω̃/G by gluing vector fields that differ by a zero mode.
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Diffeomorphism Charges

Covariance and Symmetry

In practice, one specifies H and uses Ω to compute X, which
effects phase space evolution. Since we have Ω, we are “done”.

If S[q(t), q̇(t)] is invariant under t −→ t+ ε, the induced
transformation q(t) −→ q(t+ ε) on phase space is generated
by δq = q(t+ ε)− q(t) = εq̇ and has Noether charge H.

If S[φ(x), ∂µφ] is invariant under x −→ x+ ε, the induced
phase-space symmetry δµφ = ε∂µφ yields the eigenvalues Hµ
of the stress tensor Tµν as Noether charges.

More generally, any transformation x −→ x′ that generates a
symmetry δξφ has a corresponding Noether charge.
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Diffeomorphism Charges

Hamiltonian Vector Fields

But in GR, coordinate transformations on M are gauged and yield
vanishing Noether charges, except when δg arises from an isometry.

Thus we ask: how do we obtain a Hamiltonian vector field and its
Noether charge for symmetries of P generated by isometries of M?

The answer: if ξ is an isometry, the Hamiltonian vector field is

Xξ =

(∫
M

Lξφ
a

)
δ

δφa
=

(∫
M
δξφ

a

)
δ

δφa
∈ TP. (4.15)

This vector field implements the flow of ξ only on the dynamical
fields φ in P, and does not flow the rest of the gunk in spacetime.
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Diffeomorphism Charges

Diffeomorphism Charges and Hamilton’s Equations

The Noether current for Xξ is essentially just θ−σ. More precisely,
Jξ = ιXξθ − ιξ. (This is a souped-up version of H − pq̇ − L.)

Finally, we seek the “Hamiltonian” Hξ for which ιXξΩ = −δHξ.

To find it, we use the explicit forms of Xξ and Ω to compute
ιXξΩ. If the result is δ(,), then “,” is our Hξ. Indeed,

Hξ =

∫
Σ
Jξ +

∫
∂Σ

(
ιξδ`−ιXξC

)
, (4.16)

where ` is (!) the Lagrangian on ∂M .
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The Action and its Variation

Let (M, g) have boundary (∂M, γ). The full gravity action consists
of the Einstein-Hilbert and Gibbons-Hawking-York terms:

S = SEH + SGHY =

∫
M
L+

∫
∂M

` =

=
1

16πG

∫
M
RεM +

1

8πG

∫
∂M

K ε∂M . (5.1)

The variation of L leads to the Einstein field equations:

δL = Eµνδgµν + dΘ, Eµν =
1

16πG

(
−Rµν +

1

2
Rgµν

)
εM . (5.2)

Meanwhile, δ` = 1
16πG(stuff)ε∂M contributes to Θ on ∂M .
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The Symplectic Potential and Form

After a short calculation, we obtain

(Θ + δ`)
∣∣∣
∂M

= − 1

16πG
(Kµν −Kγµν)δgµν ε∂M + dC =

=
1

2
TµνBY δgµν ε∂M + dC,

C = −γ
µνnαδgνα
16πG

· ε∂M 6= 0 (5.3)

The boundary-corrected symplectic potential in GR consists of the
Brown-York stress tensor and another total divergence.

Taking δgµν

∣∣∣
∂M

= 0, i.e. fixing the metric on ∂M , does not set

the boundary term in δS to zero! See [Harlow-Wu 2019] for an
explanation of why such terms should generally be present.
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Commentary

Once we allow for a nonzero flux from dC in the on-shell variation

δS =

∫
∂M

(Θ + δ`) =

∫
∂M

(
1

2
TµνBYδgµν + dC

)
ε∂M , (5.4)

the Dirichlet boundary conditions δγ = 0 render the variational
problem in GR well-posed in a covariant way. Viewing γ as a fixed
source reminds one of the extrapolate dictionary in AdS/CFT.

By Stokes’s theorem, the boundary-of-a-boundary term C lives on
the codimension-2 corners of the spacetime. Holography, anyone?

There are also lines of research investigating “edge modes” and
“corner potentials” in gravity that are somewhat related.
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Commentary

Once we allow for a nonzero flux from dC in the on-shell variation

δS =

∫
∂M

(Θ + δ`) =

∫
∂M

(
1

2
TµνBYδgµν + dC

)
ε∂M , (5.4)

the Dirichlet boundary conditions δγ = 0 render the variational
problem in GR well-posed in a covariant way. Viewing γ as a fixed
source reminds one of the extrapolate dictionary in AdS/CFT.

By Stokes’s theorem, the boundary-of-a-boundary term C lives on
the codimension-2 corners of the spacetime. Holography, anyone?

There are also lines of research investigating “edge modes” and
“corner potentials” in gravity that are somewhat related.
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Diffeomorphism Charges

After some inspiration by Wald and a straightforward calculation of
Harlow-Wu, one finds the diffeomorphism charges of GR:

Jξ = dQξ =⇒ Hξ = −
∫
∂Σ
τµξνTBY

µν ε∂Σ. (5.5)

This is the expression for the generators of boundary isometries
with Killing field ξµ, and is once again a corner term.

Commentary: CPS is powerful and recovers hard results in GR
(ADM, BY, even SBH) with relative ease. It smells a lot like
holography (“AdS/CFT is just spicy Stokes’s theorem”), and is
way too beautiful not to be immediately adopted by everyone.
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Summary and Conclusions
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